The Support of a Recognizable Series over a Zero-Sum Free, Commutative Semiring Is Recognizable
نویسنده
چکیده
We show that the support of a recognizable series over a zero-sum free, commutative semiring is a recognizable language. We also give a sufficient and necessary condition for the existence of an effective transformation of a weighted automaton recognizing a series S over a zero-sum free, commutative semiring into an automaton recognizing the support of S.
منابع مشابه
On recognizable and rational formal power series
We will describe the recognizable formal power series over arbitrary semirings and in partially commuting variables, i.e. over trace monoids. We prove that the recognizable series are certain rational power series, which can be constructed from the polynomials by using the operations sum, product and a restricted star which is applied only to series for which the elements in the support all hav...
متن کاملMyhill-Nerode Theorem for Recognizable Tree Series Revisited
In this contribution the Myhill-Nerode congruence relation on tree series is reviewed and a more detailed analysis of its properties is presented. It is shown that, if a tree series is deterministically recognizable over a zero-divisor free and commutative semiring, then the Myhill-Nerode congruence relation has finite index. By [Borchardt: Myhill-Nerode Theorem for Recognizable Tree Series. LN...
متن کاملOn Recognizable and Rational Formal Power Series in Partially Commuting Variables
We will describe the recognizable formal power series over arbitrary semirings and in partially commuting variables, i.e. over trace monoids. We prove that the recognizable series are certain rational power series, which can be constructed from the polynomials by using the operations sum, product and a restricted star which is applied only to series for which the elements in the support all hav...
متن کاملA Pumping Lemma and Decidability Problems for Recognizable Tree Series
In the present paper we show that given a tree series S, which is accepted by (a) a deterministic bottom-up finite state weighted tree automaton (for short: bu-w-fta) or (b) a non-deterministic bu-w-fta over a locally finite semiring, there exists for every input tree t ∈ supp(S) a decomposition t = C′[C[s]] into contexts C, C′ and an input tree s as well as there exist semiring elements a, a′,...
متن کاملDoes o-Substitution Preserve Recognizability?
Substitution operations on tree series are at the basis of systems of equations (over tree series) and tree series transducers. Tree series transducers seem to be an interesting transformation device in syntactic pattern matching. In this contribution, it is shown that o-substitution preserves recognizable tree series provided that the target tree series is linear and the semiring is idempotent...
متن کامل